Cardiac Conduction and EKG’s

Ex 31

Conduction System

- The heart has its own intrinsic nervous system which travels in the myocardium just under the endocardium
- Cardiac action potential travels from atria to ventricles in these fibers
- Controls the heart rate
- Conducts impulses quickly through the myocardium so each area contracts essentially at once
- If the myocardium was responsible for propagating the impulse the conduction would be much slower and the heart would not contract uniformly
Conduction System

- Sinoatrial node
 - Located in right atrium inf. to opening of SVC
 - Action potential begins here
 - Initiates atrial contraction
- Atrioventricular node
 - Located in right atrium ant. to opening of coronary sinus
 - Main job is to delay the action potential to give atria time to contract
- Bundle of His (AV bundle)
 - Only site where atrial impulses can travel to the ventricles
- Bundle branches
- Purkinje fibers (not shown)
 - Small branches that travel from endocardium into myocardium

Review
- Cardiac action potential is initiated in the SA node
- Travels quickly through pathways to simultaneously contract the atria
 - The atria and ventricles are insulated from each other so atrial action potentials can only enter ventricles through one pathway
- Action potential enters AV node where the impulses are slowed down and held momentarily
 - This gives the atria time to contract
- The action potential then travels quickly to the rest of the ventricular myocardium through the AV bundle, bundle branches and Purkinje fibers
Rhythmicity

- The heart has built in pacemakers
 - SA node
 - main pacemaker of the heart
 - intrinsic rate of 60-100 bpm
 - if the SA node becomes diseased other areas pick up pacemaking responsibility
 - sometimes other areas of the atrium will begin pacing known as ectopic foci
 - AV node
 - secondary pacemaker of the heart
 - intrinsic rate of 40-60 bpm
 - Ventricular pacing
 - AV bundle, branches, purkinje fibers
 - 20-40 bpm

Electrical Flow

- resting myocardial cells have a net negative charge at rest
- when an AP reaches a cell it depolarizes causing the internal net charge to become positive
- electrically, the action potential traveling through the heart can be viewed as a wave of positive charge
- Vector
 - the average direction of all of the positive charges as they travel through the myocardium
 - the average vector in a normal heart travels to the left and downward
Electrical Flow

- **Vector Influences**
 - things that influence the overall amount of charge flowing through the myocardium will change the average direction the charge is flowing

- **Infarction**
 - essentially an area that no longer carries charge
 - what would happen to the vector if the posterior wall of the L. ventricle infarcted?

- **Hypertrophy**
 - essentially an area that carries extra charge
 - how would the vector change with L. ventricular hypertrophy?
 - vector points towards hypertrophy and away from infarction
Electrocardiogram

- You can measure the electric flow of the heart through skin sensors placed on the arms and legs.
- For simplicity we will look only at lead I for now.
- Lead I goes from left arm to right arm.
- Left lead is +.
- Right lead is –.
- Depolarization towards the positive lead causes upward deflection.
- Depolarization towards the negative lead causes negative deflection.

Electrocardiogram

- EKG paper travels under the pen at 25mm/second.
- Horizontal squares every 1mm:
 - 1mm = 0.04 seconds
 - 5mm = 0.2 seconds
- 5 big boxes/sec.
- Vertical squares every 1mm:
 - 1mm = 0.1 mV
 - 5mm = 0.5 mV

- Keep in mind that the waves on the EKG only measure electrical activity in the heart and that contraction of myocardium delays the waves by a few milliseconds.
Electrocardiogram

The Waves

○ P wave
 - atrial depolarization
 - duration 0.11s
 - amplitude < 3mm
 - detects atrial function
 - SA node

○ QRS Complex
 - ventricular depolarization
 - duration 0.10s
 - detects ventricular function
 - Q wave
 - first downward stroke
 - R wave
 - first upward stroke
 - S wave
 - any downward stroke preceded by an upward stroke

○ T wave
 - ventricular repolarization
Intervals and Segments

- **PR segment**
 - End of P wave to start of QRS
 - Measures time of depolarization through AV node

- **PR interval**
 - Start of P wave to start of QRS
 - Measures time from start of SA conduction to end of AV node conduction
 - Normal 0.12-0.20s

- **ST segment**
 - End of QRS complex to start of T wave
 - Measures start of ventricular repolarization
 - Elevated in MI’s

- **ST interval**
 - End of QRS to end of T wave
 - Represents complete time of ventricular repolarization

- **QT interval**
 - Start of QRS to end of T wave
 - Duration of ventricular systole
 - Less than 1/2 of the RR interval
Intervals and Segments

- Intervals
 - The timing for depolarizations/repolarizations can be interpreted from the EKG
 - P-R 0.12-0.2 sec
 - Measures the time between the start of atrial depolarization and the start of ventricular depolarization
 - A long P-Q interval is a sign of AV node dysfunction
 - QT Interval, about 0.4 sec
 - Start of QRS to end of T wave
 - QRS 0.08-0.1 sec
 - Wider with ventricular dysfunction
 - ST segment (don’t worry about time)
 - Elevated with acute MI

Electrocardiogram

- The waves
 - More on the QRS
 - Note that the Q or the R or the S wave is not always present
 - Name according to direction of first deflection, second, etc
 - Q waves are often absent

- Lead V1
 - No Q
 - Small R
 - Large S

- Lead V2
 - No Q
 - Large R
 - Small S
Heart Rate

- Heart Rate
 - defined as beats per minute
 - easy way to estimate rate
 - find an R wave on a thick line
 - count off on the thick lines
 - 300, 150, 100, 75, 60, 50
 - until you reach another R wave

- in our example the middle R wave falls on the dark line
- the next R falls just before the 75, so estimate about 80 bpm

Normal Sinus Rhythm
- heart rate between 60-100 bpm
- pacing by SA node
- QRS after every P wave
- rhythm is regular

Sinus Tachycardia
- heart rate > 100 bpm
- p wave is there but hidden by the T wave
- regular QRS rhythm

Sinus Bradycardia
- heart rate < 60 bpm
- QRS after every P wave
- regular rhythm
ST segment elevation
- ischemia

Q wave
- in some leads may indicate ischemia and necrosis

T wave inversion
- late sign of necrosis and fibrosis

Wave Abnormalities

Atrial Fibrillation
- multifocal areas in atria firing
- no p waves and irregular heart rate

Rhythm Abnormalities
Rhythm Abnormalities

- Complete (3rd degree) AV Block
 - AV node cannot conduct impulse
 - P waves and QRS not connected
 - Irregular heart rate

- Premature Ventricular Contractions
 - Ventricles pace early
 - Early heart beat
 - Large QRS
Rhythm Abnormalities

- Ventricular Tachycardia
 - rapid ventricular pacing
 - rapid, regular rate
 - wide QRS

- Ventricular Fibrillation
 - multifocal ventricular beats
 - irregular
 - won’t last long
Axis

- QRS AXIS
- another name for the vector of depolarization
- an axis is measured in degrees
- the axis is measured by adding the positive deflection and subtracting the negative deflection
- overall + is left axis direction
- overall - is right axis direction
- for lead one most of the QRS is positive, therefore it has a leftward axis
- if an MI caused the QRS to be mostly negative the lead would have a rightward axis

For lead II:
- positive on left leg
- negative on right arm
- looking at the tracing we see that the QRS is mostly positive
- what does this mean?
QRS AXIS
lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?

Axis
-90
- lead III
- positive on left leg
- negative on left arm
looking at the tracing we see that the QRS is mostly positive
- what does this mean?
Blood Vessel Histology

- **Arteries**
 - Usually round and thick walled
 - Three layers
 - Tunica intima
 - Simple squamous epithelium
 - Internal elastic lamina
 - Tunica media
 - Smooth muscle cells
 - Elastic tissue
 - Tunica externa (adventitia)
 - Areolar or fibrous connective tissue

- **Veins**
 - Irregular, thin-walled
 - Three layers (but thinner!)
 - Tunica intima
 - Simple squamous epithelium
 - Internal elastic lamina
 - Tunica media
 - Smooth muscle cells
 - Elastic tissue
 - Tunica externa (adventitia)
 - Areolar or fibrous connective tissue
 - Valves seen in extremities
 - Shown at black arrows
Blood Vessel Histology

- capillaries
- simple squamous epithelium
- often can see single file RBC's